129

48

I am trying to construct a general tree. Are there any built in data structures in Python to implement a tree?

129

48

I am trying to construct a general tree. Are there any built in data structures in Python to implement a tree?

107

I recommend https://pypi.python.org/pypi/anytree (I am the author)

```
from anytree import Node, RenderTree
udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)
print(udo)
Node('/Udo')
print(joe)
Node('/Udo/Dan/Joe')
for pre, fill, node in RenderTree(udo):
print("%s%s" % (pre, node.name))
Udo
├── Marc
│ └── Lian
└── Dan
├── Jet
├── Jan
└── Joe
print(dan.children)
(Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))
```

anytree has also a powerful API with:

- simple tree creation
- simple tree modification
- pre-order tree iteration
- post-order tree iteration
- resolve relative and absolute node paths
- walking from one node to an other.
- tree rendering (see example above)
- node attach/detach hookups

89

Python doesn't have the quite the extensive range of "built-in" data structures as Java does. However, because Python is dynamic, a general tree is easy to create. For example, a binary tree might be:

```
class Tree(object):
def __init__(self):
self.left = None
self.right = None
self.data = None
```

You can use it like this:

```
root = Tree()
root.data = "root"
root.left = Tree()
root.left.data = "left"
root.right = Tree()
root.right.data = "right"
```

11The question is tagged with Python3, there's no need to derive `class Tree`

from object then – cfi – 2012-04-26T16:32:10.687

3

@cfi Deriving from `object`

is sometimes just a guideline: *If a class inherits from no other base classes, explicitly inherit from object. This also applies to nested classes.* See Google Python Style Guide

13@platzhirsch: Please read and quote the guideline completely: Google explicitly points out that this is required for Python 2 code to work as expected and recommended to improve compatibility with Py3. Here we're talking about Py3 code. There's no need to do extra, legacy typing. – cfi – 2012-09-27T10:45:29.030

1@cfi I totally read over this, thanks for pointing out. – Konrad Reiche – 2012-09-27T11:29:39.170

82This doesn't really explain much about making a useful tree implementation. – Mike Graham – 2010-03-01T19:54:33.197

5That's a binary tree, not a general one as asked for. – Michael Dorner – 2016-10-27T08:12:08.953

@Greg Hewgill Are you able to provide an example where the "binary" is generic, e.g. the size of splits per node is unknown? In form of a List. – Jan Hackenberg – 2017-11-19T00:29:47.600

@JanHackenberg I have used this simple one in the past: http://stackoverflow.com/questions/3753665/python-tree-structure-and-numerical-codes/3753796#3753796

– Wok – 2018-05-22T07:36:53.53337

A generic tree is a node with zero or more children, each one a proper (tree) node. It isn't the same as a binary tree, they're different data structures, although both shares some terminology.

There isn't any builtin data structure for generic trees in Python, but it's easily implemented with classes.

```
class Tree(object):
"Generic tree node."
def __init__(self, name='root', children=None):
self.name = name
self.children = []
if children is not None:
for child in children:
self.add_child(child)
def __repr__(self):
return self.name
def add_child(self, node):
assert isinstance(node, Tree)
self.children.append(node)
# *
# /|\
# 1 2 +
# / \
# 3 4
t = Tree('*', [Tree('1'),
Tree('2'),
Tree('+', [Tree('3'),
Tree('4')])])
```

Amazing, this can be easily used as a graph too! The only problem that i saw is: How can I differ the left node from the right node? – Ângelo Polotto – 2018-10-30T20:48:46.523

33

You can try:

```
from collections import defaultdict
def tree(): return defaultdict(tree)
users = tree()
users['harold']['username'] = 'hrldcpr'
users['handler']['username'] = 'matthandlersux'
```

As suggested here: https://gist.github.com/2012250

if you want to extend to an an arbitrary amount of levels check: http://stackoverflow.com/a/43237270/511809

– natbusa – 2017-04-05T16:56:18.397this shadows the built in function hash. – Tritium21 – 2017-06-01T07:27:09.833

16

There aren't trees built in, but you can easily construct one by subclassing a Node type from List and writing the traversal methods. If you do this, I've found bisect useful.

There are also many implementations on PyPi that you can browse.

If I remember correctly, the Python standard lib doesn't include tree data structures for the same reason that the .NET base class library doesn't: locality of memory is reduced, resulting in more cache misses. On modern processors it's usually faster to just bring a large chunk of memory into the cache, and "pointer rich" data structures negate the benefit.

2FYI: The interwebs are plastered with hatred against Boost. Apparently it's supposed to be a HUGE pain to deal with, especially since support for it has been discontinued. So I would recommend staying away from that – inspectorG4dget – 2010-03-01T18:54:04.770

Thanks. I haven't had any trouble personally, but I don't want to mislead so I've removed that reference. – Justin R. – 2010-03-01T18:58:04.263

15

```
class Node:
"""
Class Node
"""
def __init__(self, value):
self.left = None
self.data = value
self.right = None
class Tree:
"""
Class tree will provide a tree as well as utility functions.
"""
def createNode(self, data):
"""
Utility function to create a node.
"""
return Node(data)
def insert(self, node , data):
"""
Insert function will insert a node into tree.
Duplicate keys are not allowed.
"""
#if tree is empty , return a root node
if node is None:
return self.createNode(data)
# if data is smaller than parent , insert it into left side
if data < node.data:
node.left = self.insert(node.left, data)
elif data > node.data:
node.right = self.insert(node.right, data)
return node
def search(self, node, data):
"""
Search function will search a node into tree.
"""
# if root is None or root is the search data.
if node is None or node.data == data:
return node
if node.data < data:
return self.search(node.right, data)
else:
return self.search(node.left, data)
def deleteNode(self,node,data):
"""
Delete function will delete a node into tree.
Not complete , may need some more scenarion that we can handle
Now it is handling only leaf.
"""
# Check if tree is empty.
if node is None:
return None
# searching key into BST.
if data < node.data:
node.left = self.deleteNode(node.left, data)
elif data > node.data:
node.right = self.deleteNode(node.right, data)
else: # reach to the node that need to delete from BST.
if node.left is None and node.right is None:
del node
if node.left == None:
temp = node.right
del node
return temp
elif node.right == None:
temp = node.left
del node
return temp
return node
def traverseInorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traverseInorder(root.left)
print root.data
self.traverseInorder(root.right)
def traversePreorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
print root.data
self.traversePreorder(root.left)
self.traversePreorder(root.right)
def traversePostorder(self, root):
"""
traverse function will print all the node in the tree.
"""
if root is not None:
self.traversePreorder(root.left)
self.traversePreorder(root.right)
print root.data
def main():
root = None
tree = Tree()
root = tree.insert(root, 10)
print root
tree.insert(root, 20)
tree.insert(root, 30)
tree.insert(root, 40)
tree.insert(root, 70)
tree.insert(root, 60)
tree.insert(root, 80)
print "Traverse Inorder"
tree.traverseInorder(root)
print "Traverse Preorder"
tree.traversePreorder(root)
print "Traverse Postorder"
tree.traversePostorder(root)
if __name__ == "__main__":
main()
```

3Can you add just some notes to introduce your code and your implementation? – Michele d'Amico – 2015-04-09T07:34:34.527

9

I implemented a rooted tree as a dictionary `{child:parent}`

. So for instance with the root node `0`

, a tree might look like that:

```
tree={1:0, 2:0, 3:1, 4:2, 5:3}
```

This structure made it quite easy to go upward along a path from any node to the root, which was relevant for the problem I was working on.

1This is the way I was considering doing it, until I saw the answer. Although since a tree is a parent with two children, and if you want to go down, you can do `{parent:[leftchild,rightchild]}`

. – JFA – 2014-03-20T00:37:59.187

1Another way is to use lists of lists where the first (or more) element in the list is the node value, and the following nested two lists represent its left and right subtrees (or more for n-ary tree). – pepr – 2014-05-04T10:14:15.937

8

Greg Hewgill's answer is great but if you need more nodes per level you can use a list|dictionary to create them: And then use method to access them either by name or order (like id)

```
class node(object):
def __init__(self):
self.name=None
self.node=[]
self.otherInfo = None
self.prev=None
def nex(self,child):
"Gets a node by number"
return self.node[child]
def prev(self):
return self.prev
def goto(self,data):
"Gets the node by name"
for child in range(0,len(self.node)):
if(self.node[child].name==data):
return self.node[child]
def add(self):
node1=node()
self.node.append(node1)
node1.prev=self
return node1
```

Now just create a root and build it up: ex:

```
tree=node() #create a node
tree.name="root" #name it root
tree.otherInfo="blue" #or what ever
tree=tree.add() #add a node to the root
tree.name="node1" #name it
root
/
child1
tree=tree.add()
tree.name="grandchild1"
root
/
child1
/
grandchild1
tree=tree.prev()
tree=tree.add()
tree.name="gchild2"
root
/
child1
/ \
grandchild1 gchild2
tree=tree.prev()
tree=tree.prev()
tree=tree.add()
tree=tree.name="child2"
root
/ \
child1 child2
/ \
grandchild1 gchild2
tree=tree.prev()
tree=tree.goto("child1") or tree=tree.nex(0)
tree.name="changed"
root
/ \
changed child2
/ \
grandchild1 gchild2
```

That should be enough for you to start figuring out how to make this work

There's something is missing in this answer, I was trying this solution for the past 2 days and I think you have some logical flow in the object addition method. I will submit my answer to this question, please check that out and let me know if I can help. – MAULIK MODI – 2018-10-14T03:37:50.107

7

```
class Tree(dict):
"""A tree implementation using python's autovivification feature."""
def __missing__(self, key):
value = self[key] = type(self)()
return value
#cast a (nested) dict to a (nested) Tree class
def __init__(self, data={}):
for k, data in data.items():
if isinstance(data, dict):
self[k] = type(self)(data)
else:
self[k] = data
```

works as a dictionary, but provides as many nested dicts you want. Try the following:

```
your_tree = Tree()
your_tree['a']['1']['x'] = '@'
your_tree['a']['1']['y'] = '#'
your_tree['a']['2']['x'] = '$'
your_tree['a']['3'] = '%'
your_tree['b'] = '*'
```

will deliver a nested dict ... which works as a tree indeed.

```
{'a': {'1': {'x': '@', 'y': '#'}, '2': {'x': '$'}, '3': '%'}, 'b': '*'}
```

... If you have already a dict, it will cast each level to a tree:

```
d = {'foo': {'amy': {'what': 'runs'} } }
tree = Tree(d)
print(d['foo']['amy']['what']) # returns 'runs'
d['foo']['amy']['when'] = 'now' # add new branch
```

In this way, you can keep edit/add/remove each dict level as you wish. All the dict methods for traversal etc, still apply.

6

I've implemented trees using nested dicts. It is quite easy to do, and it has worked for me with pretty large data sets. I've posted a sample below, and you can see more at Google code

```
def addBallotToTree(self, tree, ballotIndex, ballot=""):
"""Add one ballot to the tree.
The root of the tree is a dictionary that has as keys the indicies of all
continuing and winning candidates. For each candidate, the value is also
a dictionary, and the keys of that dictionary include "n" and "bi".
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
If candidate c is a winning candidate, then that portion of the tree is
expanded to indicate the breakdown of the subsequently ranked candidates.
In this situation, additional keys are added to the tree[c] dictionary
corresponding to subsequently ranked candidates.
tree[c]["n"] is the number of ballots that rank candidate c first.
tree[c]["bi"] is a list of ballot indices where the ballots rank c first.
tree[c][d]["n"] is the number of ballots that rank c first and d second.
tree[c][d]["bi"] is a list of the corresponding ballot indices.
Where the second ranked candidates is also a winner, then the tree is
expanded to the next level.
Losing candidates are ignored and treated as if they do not appear on the
ballots. For example, tree[c][d]["n"] is the total number of ballots
where candidate c is the first non-losing candidate, c is a winner, and
d is the next non-losing candidate. This will include the following
ballots, where x represents a losing candidate:
[c d]
[x c d]
[c x d]
[x c x x d]
During the count, the tree is dynamically updated as candidates change
their status. The parameter "tree" to this method may be the root of the
tree or may be a sub-tree.
"""
if ballot == "":
# Add the complete ballot to the tree
weight, ballot = self.b.getWeightedBallot(ballotIndex)
else:
# When ballot is not "", we are adding a truncated ballot to the tree,
# because a higher-ranked candidate is a winner.
weight = self.b.getWeight(ballotIndex)
# Get the top choice among candidates still in the running
# Note that we can't use Ballots.getTopChoiceFromWeightedBallot since
# we are looking for the top choice over a truncated ballot.
for c in ballot:
if c in self.continuing | self.winners:
break # c is the top choice so stop
else:
c = None # no candidates left on this ballot
if c is None:
# This will happen if the ballot contains only winning and losing
# candidates. The ballot index will not need to be transferred
# again so it can be thrown away.
return
# Create space if necessary.
if not tree.has_key(c):
tree[c] = {}
tree[c]["n"] = 0
tree[c]["bi"] = []
tree[c]["n"] += weight
if c in self.winners:
# Because candidate is a winner, a portion of the ballot goes to
# the next candidate. Pass on a truncated ballot so that the same
# candidate doesn't get counted twice.
i = ballot.index(c)
ballot2 = ballot[i+1:]
self.addBallotToTree(tree[c], ballotIndex, ballot2)
else:
# Candidate is in continuing so we stop here.
tree[c]["bi"].append(ballotIndex)
```

3404 error on link – robert king – 2013-01-07T22:47:11.977

4

I've published a Python [3] tree implementation on my site: http://www.quesucede.com/page/show/id/python_3_tree_implementation.

Hope it is of use,

Ok, here's the code:

```
import uuid
def sanitize_id(id):
return id.strip().replace(" ", "")
(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)
class Node:
def __init__(self, name, identifier=None, expanded=True):
self.__identifier = (str(uuid.uuid1()) if identifier is None else
sanitize_id(str(identifier)))
self.name = name
self.expanded = expanded
self.__bpointer = None
self.__fpointer = []
@property
def identifier(self):
return self.__identifier
@property
def bpointer(self):
return self.__bpointer
@bpointer.setter
def bpointer(self, value):
if value is not None:
self.__bpointer = sanitize_id(value)
@property
def fpointer(self):
return self.__fpointer
def update_fpointer(self, identifier, mode=_ADD):
if mode is _ADD:
self.__fpointer.append(sanitize_id(identifier))
elif mode is _DELETE:
self.__fpointer.remove(sanitize_id(identifier))
elif mode is _INSERT:
self.__fpointer = [sanitize_id(identifier)]
class Tree:
def __init__(self):
self.nodes = []
def get_index(self, position):
for index, node in enumerate(self.nodes):
if node.identifier == position:
break
return index
def create_node(self, name, identifier=None, parent=None):
node = Node(name, identifier)
self.nodes.append(node)
self.__update_fpointer(parent, node.identifier, _ADD)
node.bpointer = parent
return node
def show(self, position, level=_ROOT):
queue = self[position].fpointer
if level == _ROOT:
print("{0} [{1}]".format(self[position].name,
self[position].identifier))
else:
print("\t"*level, "{0} [{1}]".format(self[position].name,
self[position].identifier))
if self[position].expanded:
level += 1
for element in queue:
self.show(element, level) # recursive call
def expand_tree(self, position, mode=_DEPTH):
# Python generator. Loosly based on an algorithm from 'Essential LISP' by
# John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
yield position
queue = self[position].fpointer
while queue:
yield queue[0]
expansion = self[queue[0]].fpointer
if mode is _DEPTH:
queue = expansion + queue[1:] # depth-first
elif mode is _WIDTH:
queue = queue[1:] + expansion # width-first
def is_branch(self, position):
return self[position].fpointer
def __update_fpointer(self, position, identifier, mode):
if position is None:
return
else:
self[position].update_fpointer(identifier, mode)
def __update_bpointer(self, position, identifier):
self[position].bpointer = identifier
def __getitem__(self, key):
return self.nodes[self.get_index(key)]
def __setitem__(self, key, item):
self.nodes[self.get_index(key)] = item
def __len__(self):
return len(self.nodes)
def __contains__(self, identifier):
return [node.identifier for node in self.nodes
if node.identifier is identifier]
if __name__ == "__main__":
tree = Tree()
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent = "harry")
tree.create_node("Bill", "bill", parent = "harry")
tree.create_node("Joe", "joe", parent = "jane")
tree.create_node("Diane", "diane", parent = "jane")
tree.create_node("George", "george", parent = "diane")
tree.create_node("Mary", "mary", parent = "diane")
tree.create_node("Jill", "jill", parent = "george")
tree.create_node("Carol", "carol", parent = "jill")
tree.create_node("Grace", "grace", parent = "bill")
tree.create_node("Mark", "mark", parent = "jane")
print("="*80)
tree.show("harry")
print("="*80)
for node in tree.expand_tree("harry", mode=_WIDTH):
print(node)
print("="*80)
```

0

What operations do you need? There is often a good solution in Python using a dict or a list with the bisect module.

There are many, many tree implementations on PyPI, and many tree types are nearly trivial to implement yourself in pure Python. However, this is rarely necessary.

0

Another tree implementation loosely based off of Bruno's answer:

```
class Node:
def __init__(self):
self.name: str = ''
self.children: List[Node] = []
self.parent: Node = self
def __getitem__(self, i: int) -> 'Node':
return self.children[i]
def add_child(self):
child = Node()
self.children.append(child)
child.parent = self
return child
def __str__(self) -> str:
def _get_character(x, left, right) -> str:
if x < left:
return '/'
elif x >= right:
return '\\'
else:
return '|'
if len(self.children):
children_lines: Sequence[List[str]] = list(map(lambda child: str(child).split('\n'), self.children))
widths: Sequence[int] = list(map(lambda child_lines: len(child_lines[0]), children_lines))
max_height: int = max(map(len, children_lines))
total_width: int = sum(widths) + len(widths) - 1
left: int = (total_width - len(self.name) + 1) // 2
right: int = left + len(self.name)
return '\n'.join((
self.name.center(total_width),
' '.join(map(lambda width, position: _get_character(position - width // 2, left, right).center(width),
widths, accumulate(widths, add))),
*map(
lambda row: ' '.join(map(
lambda child_lines: child_lines[row] if row < len(child_lines) else ' ' * len(child_lines[0]),
children_lines)),
range(max_height))))
else:
return self.name
```

And an example of how to use it:

```
tree = Node()
tree.name = 'Root node'
tree.add_child()
tree[0].name = 'Child node 0'
tree.add_child()
tree[1].name = 'Child node 1'
tree.add_child()
tree[2].name = 'Child node 2'
tree[1].add_child()
tree[1][0].name = 'Grandchild 1.0'
tree[2].add_child()
tree[2][0].name = 'Grandchild 2.0'
tree[2].add_child()
tree[2][1].name = 'Grandchild 2.1'
print(tree)
```

Which should output:

Root node / / \ Child node 0 Child node 1 Child node 2 | / \ Grandchild 1.0 Grandchild 2.0 Grandchild 2.1

0

If you want to create a tree data structure then first you have to create the treeElement object. If you create the treeElement object, then you can decide how your tree behaves.

To do this following is the TreeElement class:

```
class TreeElement (object):
def __init__(self):
self.elementName = None
self.element = []
self.previous = None
self.elementScore = None
self.elementParent = None
self.elementPath = []
self.treeLevel = 0
def goto(self, data):
for child in range(0, len(self.element)):
if (self.element[child].elementName == data):
return self.element[child]
def add(self):
single_element = TreeElement()
single_element.elementName = self.elementName
single_element.previous = self.elementParent
single_element.elementScore = self.elementScore
single_element.elementPath = self.elementPath
single_element.treeLevel = self.treeLevel
self.element.append(single_element)
return single_element
```

Now, we have to use this element to create the tree, I am using A* tree in this example.

```
class AStarAgent(Agent):
# Initialization Function: Called one time when the game starts
def registerInitialState(self, state):
return;
# GetAction Function: Called with every frame
def getAction(self, state):
# Sorting function for the queue
def sortByHeuristic(each_element):
if each_element.elementScore:
individual_score = each_element.elementScore[0][0] + each_element.treeLevel
else:
individual_score = admissibleHeuristic(each_element)
return individual_score
# check the game is over or not
if state.isWin():
print('Job is done')
return Directions.STOP
elif state.isLose():
print('you lost')
return Directions.STOP
# Create empty list for the next states
astar_queue = []
astar_leaf_queue = []
astar_tree_level = 0
parent_tree_level = 0
# Create Tree from the give node element
astar_tree = TreeElement()
astar_tree.elementName = state
astar_tree.treeLevel = astar_tree_level
astar_tree = astar_tree.add()
# Add first element into the queue
astar_queue.append(astar_tree)
# Traverse all the elements of the queue
while astar_queue:
# Sort the element from the queue
if len(astar_queue) > 1:
astar_queue.sort(key=lambda x: sortByHeuristic(x))
# Get the first node from the queue
astar_child_object = astar_queue.pop(0)
astar_child_state = astar_child_object.elementName
# get all legal actions for the current node
current_actions = astar_child_state.getLegalPacmanActions()
if current_actions:
# get all the successor state for these actions
for action in current_actions:
# Get the successor of the current node
next_state = astar_child_state.generatePacmanSuccessor(action)
if next_state:
# evaluate the successor states using scoreEvaluation heuristic
element_scored = [(admissibleHeuristic(next_state), action)]
# Increase the level for the child
parent_tree_level = astar_tree.goto(astar_child_state)
if parent_tree_level:
astar_tree_level = parent_tree_level.treeLevel + 1
else:
astar_tree_level += 1
# create tree for the finding the data
astar_tree.elementName = next_state
astar_tree.elementParent = astar_child_state
astar_tree.elementScore = element_scored
astar_tree.elementPath.append(astar_child_state)
astar_tree.treeLevel = astar_tree_level
astar_object = astar_tree.add()
# If the state exists then add that to the queue
astar_queue.append(astar_object)
else:
# Update the value leaf into the queue
astar_leaf_state = astar_tree.goto(astar_child_state)
astar_leaf_queue.append(astar_leaf_state)
```

You can add/remove any elements from the object, but make the structure intect.

-4

```
def iterative_bfs(graph, start):
'''iterative breadth first search from start'''
bfs_tree = {start: {"parents":[], "children":[], "level":0}}
q = [start]
while q:
current = q.pop(0)
for v in graph[current]:
if not v in bfs_tree:
bfs_tree[v]={"parents":[current], "children":[], "level": bfs_tree[current]["level"] + 1}
bfs_tree[current]["children"].append(v)
q.append(v)
else:
if bfs_tree[v]["level"] > bfs_tree[current]["level"]:
bfs_tree[current]["children"].append(v)
bfs_tree[v]["parents"].append(current)
```

5http://www.laurentluce.com/posts/binary-search-tree-library-in-python/ great explanation .... . – GrvTyagi – 2016-01-23T09:46:52.217